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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
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LAUNCH DEFLECTOR DESIGN CRITERIA
AND THEIR APPLICATION
TO THE SATURN C-1 DEFLECTOR

By

R. L. Evans and O. L. Sparks

SUMMARY U4
jeqe®

Theoretical considerations pertinent to the successful design of dry
launch deflectors for super boosters are presented, Deflector configu-
rations of many types, together with the particular configuration used
in the launching of the C-1 Saturn booster, are described.

It is concluded that the dry deflector can be successfully used to
launch super boosters. In particular, it is predicted that the Saturn
deflector may be used unlimitedly without the necessity of extensive
overhaul and repairs.

SECTION I. INTXODUCTION

The high thrust rocket engines used in present day missiles and space
vehicles release large quantities of energy in the form of exhaust gases.
These high temperature, supersonic velocity exhaust jets create serious
hazards to personnel, structures, ground support equipment, and instru-
mentation at the launch sites. The continuing trend toward larger and
higher thrust engines, with the concomitant increase in hazards, makes
it essential that accurate methods be established for predicting and con-
trolling the exhaust jets effects.

The quantity and distribution of the exhaust jet energy depend on
several variable factors. The total energy available is determined by
the type and amount of propellant used; the form and rate of energy re-
lease is controlled by the rocket engine design and the number of engines;
and distribution of the energy in the area surrounding the launcher is
controlled by the exhaust flame deflector design. Since the magnitude of
the first two of these variables is determined by the vehicle design
criteria to meet given mission requirements, the flame deflectors must



be designed for controlled deflection of a predetermined amount of energy
at the launch site. In the following sections, various types of deflectors
are discussed, and the general design criteria for an uncooled heat-sink
type deflector are developed. These criteria are applicable to a broad
range of thrust levels which should include the booster systems of space
vehicles to be developed in the foreseeable future. Although theory has
been developed and is of significant value in designing flame deflectors,
it should not be construed that the theory provides all necessary design
information. Rather, the theory must be supplemented with an extensive
model test program.

The successful launching of the first Saturn space vehicle (C-1)
provided additional verification of the design criteria developed for the
uncooled flame deflector.

SECTION -ILI. ROCKET ENGINE EXHAUST ENERGY

! The thrust developed by a rocket engine depends upon the propellant
‘ mass flow rate and the exhaust velocity. The exhaust velocities of most
LOX/RP-1 engines currently being used are approximately equal. Typical
velocity distribution patterns in free-flowing rocket engine exhausts
at sea level, for engines rated at 80,000 and 150,000 1b thrust, are
shown in FIGURES 1 and 2, respectively.

The axial velocity of the jet stream on the jet axis can be determined
by the following empirical formulas: (Ref. 1)

The axial velocity of the center of the jet stream of the jet axis
will remain unchanged until

X= Eiz_ (1)
0.053
where X = distance from nozzle discharge

D, = nozzle exit diameter
When the distance X is greater than the value given by this equation,
the gas velocity on the axis decreases according to the following relation:

U 2
log g X —-’;—— =0.79 - 33 — (2)
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where Ux = axial velocity of gas on jet axis at X
UO = axial velocity of gas at nozzle exit
r = radius of gas jet penetration from axis into

ambient air

For an underexpanded or overexpanded jet, the mixing and velocity
dissipation will occur more rapidly than indicated by these equations.

The temperature distribution in the exhausts of the same two engines,
shown in FIGURES 3 and 4, indicates a wider range of energy distribution
for the larger engine. This is to be expected since much more energy is
available in the larger engine.

The hazards created at the launcl site by these high temperature,
high velocity exhaust gases during the launching of a missile or space
vehicle make it necessary to devise methods for control and dissipation
of this energy. One method of accomplishing this is by the use of flame
deflectors.

SECTION III. DISSIPATION OF EXHAUST ENERGY

1. Flame Deflectors. Direct impingement and uncontrolled flow
of rocket engine exhaust gases during a launching would create serious
hazards to the launch vehicle and ground equipment due to spalling, melt-
ing of metallic objects, and dislodgment in the direct impingement area.

A flame deflector is a mechanical dev:ice placed in the exhaust stream to
prevent the blast from impinging directly on the launch pad and to channel
the exhaust away from the launcher area to reduce or eliminate these
hazards. Distribution of the exhaust is controlled by the type and design
of the deflector. The exhaust may be channeled in one or two directions,
or all around the launcher. In a cooled deflector, the coolant absorbs a
large amount of heat from the exhaust, thus reducing the energy in the
exhaust stream. An uncooled deflector absorbs only a small amount of the
heat, and reduces the energy level of the exhaust jet very little.

When an exhaust jet impinges on a deflector, its velocity decreases
while the temperature and pressure increase. The impingement angle de-
termines the amount of velocity decrease. As the exhaust gases flow away
from the deflector, the front of the blast compresses the atmosphere ahead
of it, and this increase in pressure causes the gases to expand radially
which reduces the gas pressure and transfers heat to the atmosphere,
thereby reducing the exhaust temperature. This action continues until a
state of equilibrium is reached with the surrounding atmosphere.



Since very few materials have the physical and mechanical properties
required to withstand the high temperatures, pressures, and velocities of
the exhaust jet, prevention of melting and erosion of the deflector ma-
terial is a major problem. Erosion can be largely eliminated by main-
taining the surface temperature below the melting point of the deflector
surface material. Several methods of accomplishing this surface tempera-
ture control have been developed and the deflectors employed may be gener-
ally classified as "cooled" and '"uncooled" types.

2. Cooled Deflectors. Water is used to cool the deflector to
maintain the temperature of the deflector surface below the melting point
of the material used. Several deflector designs of this type have been
developed based on different methods of employing the water coolant. One
method used is to introduce water into the exhaust stream through spray
nozzles located upstream from the deflector to reduce the exhaust temper-
ature and maintain the surface material below the melting point. Another
method frequently used is to circulate water through a manifold beneath
the deflector plate through which many small holes have been drilled. All,
or a portion of, the water may be forced through these holes into impinge-
ment area to provide evaporation and film cooling of the deflector surface.
Other variations of these methods have been employed to meet special
requirements.

These methods are effective, but require a large water supply, a
high capacity pumping and plumbing system, and extensive maintenance which
result in high initial and operating costs. Therefore, this type of cooled
deflector is impractical for use with tactical missiles and operational
space vehicles. However, when long duration static firings are required,
a water-cooled deflector is usually provided.

At static test sites, the cooled deflector provides an additional
advantage by reducing the overall sound pressure level through reduction
‘of the energy level in the exhaust stream, However, this advantage would
be lost at a launch site at lift-off.

3. Uncooled Deflectors. Uncooled flame deflectors must rely on
their physical properties to withstand the erosive action and high tempera-
tures of the engine exhaust. They may be generally classified as the
"heat-sink" or "ablation" type based on the characteristics method of heat
transfer employed to control surface temperatures.

In a heat-sink type deflector, a material with high thermal con-
ductivity is used to conduct the heat away from the surface rapidly enough
to prevent melting. Theoretically, this type deflector will not lose
surface material and should, therefore, have a long life. This type de-
flector was developed by the Army Ballistic Agency for use with the
Redstone and Jupiter missiles, and was recently employed with complete
success in launching the Saturn booster (C-1 vehicle).



An ablation type deflector is designed to take advantage of the
erosive effect of the exhaust. The deflector base material is coated
with an erodible material with a low thermal conductivity. As the surface
material erodes under the action of the exhaust stream, heat is removed
with the eroded particles which reduces rhe surface temperature and the
amount of heat transferred to the base material. Periodic replacement
of the erodible surface material is required, depending upon the thickness
of the material used, the duration of each exposure, and the rate of
erosion. In conclusion, it should be no:ied that many deflectors depend
on the heat-sink principle and ablation wmaterial for their operation.

SECTION IV, UNCOOLED DEFLECTOR DESIGN CRITERIA

1. Heat Transfer. The major problems associated with the design
of uncooled flame deflectors evolve from the high rate of heat transfer
from the exhaust jet to the deflector surface and the limited heat transfer
capabilities of the deflector materials which must remove this heat rapidly
enough to prevent melting.

Although the exhaust gases flow over the deflector surface at high
velocities, a film of stégnant gas forms next to the surface and acts
as an insulator which reduces the rate of heat transfer to the surface
material. The thickness of this stagnant film depends on such variables
as bulk density, viscosity, thermal conductivity, specific heat of the
exhaust gases, and the velocity of the gases parallel to the surface.
The relationship of these variables and the local heat transfer coeffi-
cient may be expressed by the empirical equation for turbulent flow over
a flat plate: (Ref. 2)

4/5 1/3
h X vV X c 3
X _ 0.0296 \ %" _p" (3
K " I

where hX = local heat transfer coefficient of the film
X = distance downstream from the initial impingement
point
k = thermal conductivity of the gas

p = bulk density of the gas

Vx = gas velocity parallel to the surface
L = gas viscosity
C_ = specific heat of the gas



The coefficient of heat transfer of the film is also influenced by
other considerations such as shock waves, impingement angle, and boundary

layer.

2. Shock Waves. A shock wave is a planar discontinuity or
boundary which is produced when a supersonic jet stream impinges on a
surface. The shock wave may be normal to or at an angle to the direction
of fluid flow, depending upon the position of the deflecting surface with
relation to the direction of flow. Shock waves cause abrupt changes in
the properties of the fluid flowing through the wave. The type of shock
wave produced determines the extent of change in the fluid properties.
Since the rate of heat transfer to the deflecting surface depends, to a
large extent, on the downstream properties of the flowing fluid, it is
evident that an analysis of shock waves to determine their influence on
heat transfer rates is necessary in the design of any rocket engine flame
deflector. Shock waves may be generally classified as normal and oblique,
based on their position relative to the direction of fluid flow.

A normal shock is a discontinuity produced in a plane perpendicular
to the direction of fluid flow. Fluid flowing through a normal shock
undergoes a sudden rise in static pressure, density, enthalpy, and tempera-
ture, and a corresponding decrease in velocity and isentropic stagnation
pressure. At certain upstream Mach numbers, the downstream static pressure
and temperature can increase to almost combustion chamber values. In the
case of normal shocks, it is possible to express the upstream and down-
stream properties of the fluid in terms of the upstream Mach number (M,)
and the ratio of specific heats (¥). These relations may be expressed
by the following equations for flow through a normal shock where the
subscripts e and 2 refer, respectively, to conditions upstream and
downstream from the shock: (Ref, 3)

Exit Mach number (M) (4)
M 2 2
e + 7 ~1
M=
2y M2 -1
y -1

Static Pressure Ratio:

~
+
=
~
+
[u—y

__1.)2_2_2_ M2- y-1 (5)
P
e

Temperature Ratio:

1+y-1 M2 2y M2-1
T, 2 (6)

T=

e (_li;t_l_lz Méz
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The impingement angle is also important in the determination of
the forces acting on a deflector in the impingement area. Determination
of these forces is discussed in 5 below.

4. Boundary Layer. When an exhaust stream flows over a de-
flecting surface, the velocity of the fluid particles adjacent to the
surface is reduced to almost zero due to friction between the surface and
the fluid. Similarly, each successive layer of fluid is affected to a
decreasing extent until they finally reach mainstream velocity. These
low velocity layers form a film or boundary layer on the deflector sur-
face which acts as an insulator or thermal barrier to the passage of
heat. The insulating effect of the boundary layer is a function of its
thickness which is dependent on the properties of the fluid and nature of
the flow over the surface.

The boundary layer thickness (which is the distance normal to the
deflector surface) required for the fluid to reach mainstream velocity is
a function of the velocity, density, and dynamic viscosity of the fluid,
and the distance downstream from the point of initial impingement. The
properties can be combined into the dimensionless Reynolds number as
follows:

p VX
Npe =—— 8
)
where N.. = Reynolds number

p = density of exhaust fluid

VX = downstream velocity of exhaust

X = distance downstream from initial impingement
point

g = dynamic viscosity of the fluid

*Fluid flow over a surface may be described as laminar or turbulent.
When the fluid layers next to the surface flow smoothly, even though they
have different relative velocities, the condition is referred to as laminar
flow. When the flow of the fluid layers is rough, and unpredictable
eddies are formed, the condition is referred to as turbulent flow. Immedi-
ately after impingement, a boundary layer is formed on the deflecting sur-
face. At the point of impingement, the thickness of the boundary layer
is negligible and the coefficient of heat transfer is maximum. For a
short distance downstream from the point of impingement, laminar flow
occurs and boundary layer thickness increases which results in a de-
creasing heat transfer coefficient. Transition from laminar flow to |
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turbulent flow occurs at a point downstream from the initial impingement
point; here, the boundary layer decreases in thickness and the heat
transfer coefficient is again a maximum. This transition point is be-
lieved to be between Reynolds numbers of 10° and 2 x 10°. FIGURE 12
shows the relation between the impingement angle © and the downstream
distance to the transition point X for the two Reynolds number limits,
Surface roughness or eroded particles in the exhaust stream can cause
sufficient change in the Reynolds number to affect the location of the
transition point, but such effects were not considered in determination
of the two curves illustrated.

When a supersonic jet impinges on a flat plate at some angle & ,a
shock pattern is known to develop. FIGURE 13 shows the theoretical pattern
developed, together with the variation of static pressure and the film
heat transfer coefficient. Circled odd numbers indicate regions of low
pressure, and circled even figures indicate regions of high pressure. The
variation in the average heat transfer coefficient is also shown. It is
to be noted that the greater the distance over which the heat transfer
coefficient is averaged, the lower will be the value of the film coeffi-
cient. The greatest damage to the deflector will occur at the point of
maximum coefficient. Even though the average coefficient may be low,
burnout at a point may occur due to a high local film coefficient. This
high local film coefficient may be attributed to disturbances in the
boundary layer due to the formation of complex shock waves, changes in
flow direction, and in the case of multiple jets, to the interaction of
jet streams.

5. Forces. A study of the forces acting on a deflector under
the impact of a supersonic jet stream shows a definite relationship be-
tween these forces and the jet impingement angles on a flat and curved
plate. A diagram of the forces acting on a typical deflector surface is
illustrated in FIGURE 14. From the force and angular relationships shown,
certain pertinent equations can be derived if the following assumptions
are made:

a. d (impingement angle) < &, (critical impingement angle
for shock detachment), two dimensional flow.

b. Total mass flow leaves both flat plate number 1 and
curved plate number 2 as essentially parallel flow.

¢. No shock losses over the curved plate number 2, i. e.,
constant velocity over plate number 2.

d. Inviscid flow.

Then, the horizontal and vertical forces acting on the flat plate
number 1 are as follows:
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F. = F sin (2 3,) 9
Hy © = 1
_F osin2
F = F sin® ® (10)
\Y 1
1
where F = jet force (mass flow rate X velocity)
g
FH = horizontal component of force on plate number 1
1
FV = vertical component of force on plate number 1
1
01 = impingement angle on plate number 1

These equations are applicable for any fluid jet of any configu-
ration which impinges on an inclined flat plate, when the mass flow
leaving the plate is parallel to the surface. Within the assumed limits |
of 3 , these relationships are for inviscid flow., FIGURE 15 shows
the ratio FV1/F and the ratio FHl/F versus the impingement angle 61 ,

for a flat plate deflector (Section number 1), The scale imposed on
the abscissa shows the relationship of the Mach number of an air jet
(y = 1.4) to the deflector critical angle or shock detachment angle as
determined from Equation (5). It shows that, as the jet Mach number
increases, the value of the shock detachment angle &_. increases,
Since the net force acting on the curved plate section number 2 is
equal to F cos 3;, then the forces acting on the curved plate section
number 2 shown in FIGURE 14 may be expressed by the following equations
which are applicable to loss-free turning vanes with two-dimensional
flow:

FNZ = F cos &; sin 8y = F cos? 81 (1D

F cos 87 (l-cos &y) = F cos &7 (l-sin 37) (12

|
=
N
il

i

FH2 = FN2 cos 37 -FT2 sin &) = F cos d7 (l-sin &3) (13)

F cos? 81 (14)

!
<
I

F cos d7 + F sin &

where Fy. = horizontal component of force on curved plate |
2 number 2
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Fy. = vertical component of force on curved plate
2 number 2
FTZ = tangential component of force on curved plate

number 2
FNZ = normal component of force on curved plate number 2

The ratio Fy /F and the Fy /F versus the compliment of the impinge-
ment angle (&) for the curve% plate deflector section number 2 is
shown on FIGURE 16.

6. Materials. Metals are the logical materials for conductive
or heat-sink type deflectors. Any metal selected must be capable of con-
ducting heat away from the deflector surface at a rate that will main-
tain the exposed surface at a temperature below its melting point. Several
metals having high melting temperatures and thermal conductivities are
also capable of withstanding high thermal and mechanical shocks. However,
when all factors are considered, mild steel and copper appear to be the
most suitable for deflectors. Copper has a much higher thermal conduc-
tivity than steel, but steel has a higher melting point. FIGURES 17 and
18 show, respectively, the calculated thickness of steel and copper re-
quired to maintain the surface temperature below the melting point in
relation to impingement angle and exposure time. These illustrations
show that the required thickness of steel is less than copper but the
variation in thickness for different impingement angles is greater. As
a result of various tests by Government agencies at Redstone Arsenal
since 1951, it has been empirically determined that carbon steel is more
suitable than copper for heat-sink type deflectors.

FIGURE 19 shows the relation between thickness of a mild steel de-
flection plate and the calculated time required to raise the surface
temperature to approximately 90 percent of its melting temperatures. This
figure is based upon the following information which closely approximates
conditidns of the Saturn booster and deflector configuration:

Heat Transfer Coefficient h = Btu/hr fe? °F
Impingement Angle 5 = 30°

Ratio of Specific Heats vy = 1.2

Mach Number of Exhaust Jet M, = 3.12
Stagnation Temperature T, = 6430°R

Static Temperature T, = 3260° R

Recovery Temperature TRecovery = 6254° R
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From this graph it is apparent that the time required is directly
related to metal thicknesses, up to a certain thickness, beyond which,
thickness has no influence on the ability of the material to absorb heat.
A material thickness of 1 inch was selected for the Saturn flame deflector.

SECTION V. UNCOOLED FLAME DEFLECTOR CONFIGURATIONS

1. Typical Designs. The amount of heat transferred to a de-
flector is a function of the impingement angle and dwell time of the
exhaust stream. As dwell time increases, smaller impingement angles are
-required to reduce the heat transfer rate. However, since smaller im-
pingement angles increase the deflector height, and hence, the height
of the launcher, it is desirable to employ the largest possible impinge-
ment angle. Any deflector design must be based on a compromise between
these requirements. Several successful deflector designs with certain
common features have been developed to meet the special requirements for
different missiles and space vehicles.

With any type deflector, the greatest blast effects occur in the
area of initial impingement, where the downstream flow direction is
changed, and where a stagnant front is formed. To reduce boundary layer
disturbances, deflectors should be designed so that the area of impinge-
ment is a flat surface and the area of the deflector which changes the
downstream direction of fluid has a large radius of curvature. The entire
surface of the deflector should be smooth and free from projections to
reduce the formation of stagnant points and prevent local burnouts. The
special features of a particular launcher and vehicle must also be con-
sidered, e.g., a multiengine booster might be oriented with respect to
the deflector to have the exhausts of the engines ride one upon the other.
Several typical deflector designs and the major characteristics of each
are discussed in the following paragraphs.

a. Flat Plate. The simplest deflector configuration is a
flat plate positioned in the vehicle exhaust stream so that the jet im-
pinges normal to its surface. It is characterized by very high heat
transfer rates which make it suitable only for vehicles having a short
launcher dwell time and relatively low propellant mass flow rates. It
should be noted that this type deflector precludes the placing of any
ground support equipment in close proximity to the launcher, since severe
damage may be incurred from the nondirected exhaust.

b. Dish~Shaped. Dish-shaped deflectors are also character-
ized by high heat transfer rates. Ground support equipment cannot be
placed in the vicinity of the launcher due to the wide spreading of the
exhaust jet. 1In addition, their geometry causes the exhaust stream to be
reversed with the inherent possiblity of damage to the booster vehicle
tail section.
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¢c. Unidirectional Deflector. The unidirectional or bucket
type deflector consists of a curved section or an inclined straight section
and curved section combination which directs the exhaust gases away from
the launcher area. Local heat transfer rates tend to be high at the
initial impingement point on the straight section and at the joining of
the straight and curved sections (secondary impingement point).

d. Wedge-Shaped Deflector. The wedge-shaped deflector is
the type used on Launch Complex 34 (LC 34) for the Saturn (C-1) firing
and is formed by joining together two unidirectional deflectors. This
type of deflector is particularly adaptable to multiengine booster vehicles,
as the deflector height may be reduced to approximately one-half that of
the unidirectional deflector height by having the engine exhausts imping-
ing on both sides of the deflector. Care must be exercised to ensure that
the engine exhausts do not impinge directly on the leading edge of the
deflector, since high heat transfer rates would occur. When this con-
dition cannot be avoided (five engines), provisions must be made to water-
cool the leading edge or part of it. A reduction in the horizontal forces
required to secure this type of deflector in place, as compared with the
unidirectional type,is obtained since these forces may be balanced.

2. Saturn Flame Deflector. The deflector used for the C-1
firing is a culmination of the efforts of design engineers using the
analytical approach already outlined, and the test engineers using model
studies. Report No. MTP-M-TEST-61-14, 1:20 Scale Model Saturn Launch
Deflector Studies, by C. P. Verschoore, presents a breakdown of the tests
run on a scale model Saturn launcher deflector. It is interesting to
note here that the average heat transfer coefficients for the model and
full scale deflectors conform to the following relationship: (Ref. 2)

0.2

hX full scale = (X Model D) hX model (15)
avg (X full scale) avg
hX = average heat transfer coefficient
avg over some distance X downstream

from the initial impingement point.

Since local heat transfer coefficients for model and prototype may
be equal, and as shown by equation (15), the average heat transfer co-
efficient of the model is greater than the prototype. It is necessary
to use water as a coolant for model tests.

FIGURE 20 shows the C-1 deflector configuration arrived at by the
joint efforts of the design and test engineers. The flame pattern of
the Saturn vehicle as it impinges on the deflector during holddown is
shown on FIGURE 21. The recent firing of the Saturn booster was a verifi-
cation of the approach taken by the proponents of the uncooled flame
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deflector for launching of super boosters. FIGURE 22 is a photograph of
the C-1 deflector after launching of the Saturn vehicle. As can be seen
by comparing FIGURES 20 and 22, the deflector came through the C-1 firing
literally unscathed, i.e., the deflector needs only to be repainted prior
to reuse. Instead of the 8 to 10 firing use predicted, postfiring inspect-
ion indicates the deflector life may be practically unlimited.
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MATERIAL THICKNESS, In

ASSUMPTIONS:

(1) hpox = 30 SIN 8,BTU/ in? sec °F
(2) HEISLER METHOD OF HEAT TRANSFER CALCULATION
(3) GAS STAGNATION TEMPERATURE 5000° F

(4) INITIAL WALL TEMPERATURE = 60°F
(dotted lines indicate data extrapolation)
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MATERIAL THICKNESS, in

ASSUMPTIONS

() h = 30 sin 8, BTU/in" sec °F

(2) HEISLER METHOD OF HEAT TRANSFER CALCULATION
(3) GAS STAGNATION TEMPERATURE, 5000°F

(4) INITIAL WALL TEMPERATURE = 60 °F
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